Electronic absorption spectra of rhenium(VII) compounds: the effect of the coordination number

I. S. Ionova* and V. L. Rubailo

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 117977 Moscow, Russian Federation. Fax: +7 (095) 939 7382

Changes in electronic absorption spectra in the following series: $MeRe(L_2)O_3 \leftarrow MeReO_3 \leftarrow ReO_4^- \rightarrow ReO_6^{-5}^-$, have been studied in terms of the qualitative MO scheme.

Key words: methyltrioxorhenium; electronic absorption spectra; molecular orbitals.

Methyltrioxorhenium $MeReO_3$ is a highly efficient catalyst for epoxidation, metathesis, and polymerization of olefins and cyclic hydrocarbons, and hydrolysis of epoxides. ¹⁻³ In the course of these reactions, intermediate complexes form, which changes the color of the initial solutions. In particular, the appearance of the yellow color of the solution of methyltrioxorhenium in t-C₄H₉OH in the presence of hydrogen peroxide is caused by the formation of a complex of the following type³

Previously, based on the data of IR spectroscopy, it was suggested that the oxirane cycle is coordinated by the MeReO₃ molecule in the alkylation of cyclohexane oxide. In this case, the colorless initial solution of methyltrioxorhenium in isopropyl alcohol turns light brown, and then the color disappears. Because intermediate complexes were not isolated, they were not well characterized.

Compounds of Re^{VII} are mainly perrhenates, salts of perrhenic acid, and their derivatives containing ReO₄⁻, ReO₅³⁻, or ReO₆⁵⁻ anions. The MeReO₃ compound under consideration is an analog of the ReO₄⁻ perrhenate anion in which the O atom is replaced by a Me group.

$$\begin{bmatrix}
0 & Me \\
Re & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
Re & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
Re & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
Re & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 & O
\end{bmatrix}$$

$$\begin{bmatrix}
0 & Me \\
0 &$$

An interesting feature of the Re^{VII} compounds is the fact that they change color when the coordination number changes. Previously, it has been established⁵ that ReO₄⁻ has a tetrahedral structure (the Re—O distance is 1.77 Å). Salts containing the ReO₄⁻ anion, as well as perrhenic acid, are colorless. However, when the struc-

ture changes from tetrahedral to octahedral or distorted octahedral, the color changes. Thus, $Ba(ReO_4)_2$ is colorless, $Ba_3(ReO_5)_2$ is yellow, and $Ba_5(ReO_6)_2$ is orange. It may be suggested that the change in color of the solution of the metal complex in the course of the catalytic reaction is associated with an increase in the coordination number, as in the case with the ReO_4 perrhenate ion. If a compound, such as a dimer, contains two Re^{VII} atoms, one of which is tetrahedrally coordinated and the other of which is octahedrally coordinated, a yellow color, which is typical of the ReO_6^{5-} anion, appears (see Ref. 7).

In this work, electronic absorption spectra in the following series of compounds

 $MeRe(L_2)O_3 \leftarrow MeReO_3 \leftarrow ReO_4^- \rightarrow ReO_6^{5-}$

were studied in terms of the qualitative MO scheme.

Molecules of hydrogen peroxide³ or cyclohexane oxide⁴ may act as ligands (L).

Results and Discussion

In the Re^{VII} compounds, all seven valence electrons are involved in chemical bonding. In these complexes, only one type of electron transition, which corresponds to the transfer of charge from the ligands to the central atom, is possible. Analysis of the energies of the charge transfer bands ($E_{\rm cl}$) in complexes of transition metals with the d⁰ electronic configuration (Table 1) demonstrates that, first, in going from ReO₄⁻ to MeReO₃ and ReO₆⁵⁻, $E_{\rm cl}$ decreases, i.e., the maxima of the corresponding bands in the electronic absorption spectra shift to the long-wave region; second, in MeReO₃ and ReO₄⁻, transitions with close energy values occur (41800 and 44000 cm⁻¹); third, in MeReO₃, new electron transitions in the long-wave region appear because of the decrease in the symmetry.

In the qualitative MO scheme, the t_1 and t_2 ligand levels in ReO_4^- and ReO_6^{5-} (Fig. 1) are occupied by

Table 1. Energies (in 10³ cm⁻¹) of the charge transfer bands in complexes with the d⁰-electronic configuration of the metal^{8,9,10}

Complex	\mathcal{E}_{ct}	References	
VO ₄ 3-	36.9	8,9	
CrO ₄ 2-	26.82	8,9	
MoO ₄ 2-	44.5	8,9	
TcO ₄	34.9	8,9	
RuO₄	26.0	8,9	
WO ₄ 2-	50.3	8,9	
OsO ₄	33.5	8,9	
MnO_4^-	18.32	8,9	
ReO ₄	44.0;	8,9	
	49.0		
RcO ₆ 5-	23.26	10	
McReO ₃	41.84;	This	
	37.04;	work	
	29.85		

electrons, while the d levels of the central atom are free. In ReO_6^{5-} , the highest occupied molecular orbital is a nonbonding orbital with the participation of the π orbitals of the oxygen atom.

In Fig. 1, the splitting of the energy terms of the d electron by the ligand crystal field in the cases of tetrahedral and octahedral coordinations are denoted by Δ_t and Δ_0 . It is known⁹ that

$$\Delta_{\rm t} = 4/9\Delta_{\rm o},\tag{2}$$

if $R_{\rm Re-O}$ are equal in the cases of octahedral and tetrahedral coordination. However, even in ${\rm Re_2O_7}$ (see Ref. 7), the average values of $R_{\rm Re-O}$ are 1.75 Å and 1.905 Å in the tetrahedral and octahedral coordination polyhedra, respectively; in ${\rm ReO_6}^{5-}$ the Re-O distance is even larger. Because of the different values of $R_{\rm Re-O}$,

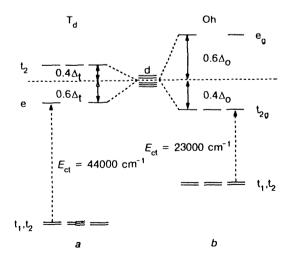


Fig. 1. Splitting of the energy terms of the d electron in (a) the tetrahedral ligand field in ReO_4^- and in (b) the octahedral ligand field in ReO_6^{5-} .

the coefficient in (2) is not equal to 4/9; however, the ratio

$$\Delta_{t} \leq \Delta_{o}$$
 (3)

is retained. It is apparent that two factors, namely, a larger value of Δ_0 and a lower energy of the 2p-AO of the oxygen atom in the molecule with octahedral coordination, should decrease the value of the energy gap between the ligand MO and the d-AO.

To make a quantitative estimation, let us define $E_{\rm ct}$ as the difference between the energy of the donor AO of the oxygen atom (E_0) and the energy of the acceptor AO of the metal ($E_{\rm m}$):

$$E_{\rm ct} = E_0 - E_{\rm m}. \tag{4}$$

It is evident that

$$E_0 = E_{2p} - E'_{2p}, (5)$$

where E_0 is the energy of the 2p-AO of the free oxygen atom and E'_{2p} is the change in this energy in the molecule owing to the negative charge on the oxygen atom. Therefore,

$$E_{\rm M} = E_{\rm 5d} - E'_{\rm 5d} + E_{\rm cr} = E_{\rm 5d} - \delta E_{\rm 5d},$$
 (6)

where E_{5d} is the energy of the 5d-AO of the Re atom and δE_{5d} is the change in this energy in the molecule. As a result, we obtain

$$E_{ct} = (E_{2p} - E'_{2p}) - (E_{5d} - \delta E_{5d}). \tag{7}$$

The parameters of the free atoms were determined previously: $E_{2p} = 13.614 \text{ eV}$. The energies of the 5d-AO of the rhenium atom were calculated by the Hartree-Fock-Slater method including the relativistic correction: $E_{5d(-3/2)} = 9.278 \text{ eV}$ and $E_{5d(-5/2)} = 8.246 \text{ eV}$.

Therefore, Eq. (7) can be written in the form:

$$E_{ct} = 39141 \text{ (cm}^{-1}) - E'_{2p} + \delta E_{5d}.$$
 (8)

This equation is applicable to all Re compounds. From this equation, the change in $E_{\rm ct}$ for ${\rm ReO_4}^-$ and ${\rm ReO_6}^{5-}$ may be evaluated. According to the data previously reported, 8,9 the first charge transfer band in ${\rm ReO_4}^-$ has a maximum at 44000 cm⁻¹, although the maximum is at 41700 cm⁻¹ (see Ref. 13). Then, for ${\rm ReO_4}^-$ we obtain

$$-E'_{2p} + \delta E_{5d} = 5000 \text{ cm}^{-1}$$
.

For ReO₆⁵⁻, this value changes sign (-15881 cm⁻¹). This occurs because of the large negative charge on the oxygen atom. It is evident that Eq. (8) gives results that closely approximate the experimental data.

For MeReO₃, the scheme of the levels corresponds to the $C_{3\nu}$ point symmetry group (a distorted tetrahedron). Figure 2 shows splitting of the energy terms of the d electron in going from ReO₄⁻ to MeReO₃. In the

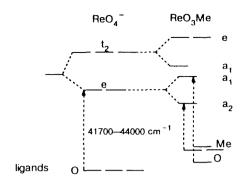


Fig. 2. Change in splitting of energy terms of the d electron in going from ReO₄⁻ to MeReO₃.

crystal field of the distorted tetrahedron of MeReO₃, the e level splits into a_1 and a_2 , which results in the appearance of two charge transfer bands instead of one band. The t_2 level splits into e and a_1 ; however, the transition to these levels is, apparently, higher than 40000 cm⁻¹. Therefore, bands with maxima corresponding to transitions to the a_1 and a_2 levels will appear in the electronic absorption spectrum. The shift of the $E_{\rm ct}$ perrhenate band (43500–44000 cm⁻¹) to 42000 cm⁻¹ in MeReO₃ is determined by splitting of the e level, and, apparently, by the lower charge on the oxygen atom.

Therefore, analysis of the electronic absorption spectra provide valuable data on the structures of the intermediate complexes that are formed in the course of reactions in which rhenium(vii) complexes participate. The appearance of new bands is indicative of the change in the coordination number of rhenium in its complexes. The method described using Eq. (8) makes it possible to characterize the structure of the intermediate complex.

It is conceivable that formation of dimers with different coordination numbers of Re atoms of the type

$$Me-Re-O-ReO_3 \ O_2 \ C_2$$

will limit the use of Eq. (8).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 93-03-04614).

References

- W. A. Herrmann, W. Wagner, J. G. Kuchler, et al, Angew. Chem., Int. Ed. Engl., 1988, 27, 394.
- W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 1988, 27, 1297.
- 3. W. A. Herrmann, W. Fisher, and D. Marz, Angew. Chem., Int. Ed. Engl., 1991, 30, 1638.
- A. B. Kholopov, A. V. Nikitin, and V. L. Rubailo, Kinet. Katal., 1995, 36, 111 [Kinet. Catal., 1995, 36 (Engl. Transl.)].
- 5. J. C. Moscow, Acta Crystallogr., 1960, 13, 443.
- R. Scholder, K. L. Hupper, and P. P. Pfeifer, Angew. Chem., 1963, 75, 375.
- 7. H. Bayer et all, Angew. Chem., (Int. Ed.), 1968, 7, 295.
- 8. A. Carrington and McR. Symons, Chem. Rev., 1963, 64,
- C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Addition Wesley Publ., 1962.
- E. J. Baran and A. Muller, Z. Anorg. Allgem. Chem., 1969, 368, 167.
- 11. C. E. Moore, *Atomic Energy Levels*, Ed. by National Burean standarts, 1958, 1.
- L. M. Dautov, Preprint of Institute of Nuclear Physics, Acad. Sci. of Kazakhstan, no. 5-82, Alma-Ata, 5, 1982.
- G. C. Allen and K. Warren, Structure and Bonding, 1975, 108.

Received January 12, 1996; in revised form March 4, 1996